
event.cwi.nl/lsde

Large-Scale Data Engineering

The MapReduce Framework & Hadoop

event.cwi.nl/lsde

Key premise: divide and conquer

work

w1 w2 w3

r1 r2 r3

result

worker worker worker

partition

combine

event.cwi.nl/lsde

Parallelisation challenges

• How do we assign work units to workers?

• What if we have more work units than workers?

• What if workers need to share partial results?

• How do we know all the workers have finished?

• What if workers die?

• What if data gets lost while transmitted over the network?

What’s the common theme of all of these problems?

event.cwi.nl/lsde

Common theme?

• Parallelization problems arise from:

– Communication between workers (e.g., to exchange state)

– Access to shared resources (e.g., data)

• Thus, we need a synchronization mechanism

event.cwi.nl/lsde

Managing multiple workers

• Difficult because

– We don’t know the order in which workers run

– We don’t know when workers interrupt each other

– We don’t know when workers need to communicate partial results

– We don’t know the order in which workers access shared data

• Thus, we need:

– Semaphores (lock, unlock)

– Conditional variables (wait, notify, broadcast)

– Barriers

• Still, lots of problems:

– Deadlock, livelock, race conditions...

– Dining philosophers, sleeping barbers, cigarette smokers...

• Moral of the story: be careful!

event.cwi.nl/lsde

Current tools

• Programming models

– Shared memory (pthreads)

– Message passing (MPI)

• Design patterns

– Master-slaves

– Producer-consumer flows

– Shared work queues

message passing

P1 P2 P3 P4 P5

shared memory

P1 P2 P3 P4 P5
m

e
m

o
ry

master

slaves

producer consumer

producer consumer

work
queue

event.cwi.nl/lsde

Parallel programming: human bottleneck

• Concurrency is difficult to reason about

• Concurrency is even more difficult to reason about

– At the scale of datacenters and across datacenters

– In the presence of failures

– In terms of multiple interacting services

• Not to mention debugging…

• The reality:

– Lots of one-off solutions, custom code

– Write you own dedicated library, then program with it

– Burden on the programmer to explicitly manage everything

• The MapReduce Framework alleviates this

– making this easy is what gave Google the advantage

event.cwi.nl/lsde

What’s the point?

• It’s all about the right level of abstraction

– Moving beyond the von Neumann architecture

– We need better programming models

• Hide system-level details from the developers

– No more race conditions, lock contention, etc.

• Separating the what from how

– Developer specifies the computation that needs to be performed

– Execution framework (aka runtime) handles actual execution

The data center is the computer!

event.cwi.nl/lsde
Source: Google

The Data Center is the Computer

Can you program it?

event.cwi.nl/lsde

MAPREDUCE AND HDFS

event.cwi.nl/lsde

Big data needs big ideas

• Scale “out”, not “up”

– Limits of SMP and large shared-memory machines

• Move processing to the data

– Cluster has limited bandwidth, cannot waste it shipping data around

• Process data sequentially, avoid random access

– Seeks are expensive, disk throughput is reasonable, memory

throughput is even better

• Seamless scalability

– From the mythical man-month to the tradable machine-hour

• Computation is still big

– But if efficiently scheduled and executed to solve bigger problems we

can throw more hardware at the problem and use the same code

– Remember, the datacenter is the computer

event.cwi.nl/lsde

Typical Big Data Problem

• Iterate over a large number of records

• Extract something of interest from each

• Shuffle and sort intermediate results

• Aggregate intermediate results

• Generate final output

Key idea: provide a functional abstraction for these two operations

event.cwi.nl/lsde

MapReduce
• Programmers specify two functions:

map (k1, v1) → [<k2, v2>]

reduce (k2, [v2]) → [<k3, v3>]

– All values with the same key are sent to the same reducer

shuffle and sort: aggregate values by keys

reduce reduce reduce

map map map map

a 1 b 2 c 6 c 3 a 5 c 2

a 1 b 2 6 3 5 c 2

k1 v1 k2 v2 k3 v3 k4 v4 k5 v5 k6 v6 k7 v7 k8 v8

b 7 c 8

8 7

r1 s1 r2 s2 r3 s3

event.cwi.nl/lsde

MapReduce runtime
• Orchestration of the distributed computation

• Handles scheduling

– Assigns workers to map and reduce tasks

• Handles data distribution

– Moves processes to data

• Handles synchronization

– Gathers, sorts, and shuffles intermediate data

• Handles errors and faults

– Detects worker failures and restarts

• Everything happens on top of a distributed file system (more information
later)

event.cwi.nl/lsde

MapReduce
• Programmers specify two functions:

map (k, v) → <k’, v’>*

reduce (k’, v’) → <k’, v’>*

– All values with the same key are reduced together

• The execution framework handles everything else

• This is the minimal set of information to provide

• Usually, programmers also specify:

partition (k’, number of partitions) → partition for k’

– Often a simple hash of the key, e.g., hash(k’) mod n

– Divides up key space for parallel reduce operations

combine (k’, v’) → <k’, v’>*

– Mini-reducers that run in memory after the map phase

– Used as an optimization to reduce network traffic

event.cwi.nl/lsde

Putting it all together

shuffle and sort: aggregate values by keys

reduce reduce reduce

map map map map

a 1 b 2 c 6 c 3 a 5 c 2

a 1 b 2 9 8 5 c 2

k1 v1 k2 v2 k3 v3 k4 v4 k5 v5 k6 v6 k7 v7 k8 v8

b 7 c 8

7

r1 s1 r2 s2 r3 s3

combine combine combine combine

a 1 b 2 c 9 a 5 c 2 b 7 c 8

partition partition partition partition

event.cwi.nl/lsde

Two more details

• Barrier between map and reduce phases

– But we can begin copying intermediate data earlier

• Keys arrive at each reducer in sorted order

– No enforced ordering across reducers

event.cwi.nl/lsde

“Hello World”: Word Count

Map(String docid, String text):
 for each word w in text:
 Emit(w, 1);

Reduce(String term, Iterator<Int> values):
 int sum = 0;
 for each v in values:
 sum += v;
 Emit(term, sum);

event.cwi.nl/lsde

MapReduce Implementations

• Google has a proprietary implementation in C++

– Bindings in Java, Python

• Hadoop is an open-source implementation in Java

– Development led by Yahoo, now an Apache project

– Used in production at Yahoo, Facebook, Twitter, LinkedIn, Netflix, …

– The de facto big data processing platform

– Rapidly expanding software ecosystem

• Lots of custom research implementations

– For GPUs, cell processors, etc.

event.cwi.nl/lsde

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

master

user

program

output

file 0

output

file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read (4) local write

(5) remote read (6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

event.cwi.nl/lsde

How do we get data to the workers?

Compute Nodes

What’s the problem here?

NAS

NAS
cluster

client machine

file server farm

(NAS,SAN,..)

worker
worker

worker
worker

worker
worker

worker

event.cwi.nl/lsde

Distributed file system

• Do not move data to workers, but move workers to the data!

– Store data on the local disks of nodes in the cluster

– Start up the workers on the node that has the data local

• Why?

– Avoid network traffic if possible

– Not enough RAM to hold all the data in memory

– Disk access is slow, but disk throughput is reasonable

• A distributed file system is the answer

– GFS (Google File System) for Google’s MapReduce

– HDFS (Hadoop Distributed File System) for Hadoop

Note: all data is replicated for fault-tolerance (HDFS default:3x)

Compute Nodes
worker worker worker worker worker worker worker worker worker worker worker worker

HDFS (GFS)

Distributed
File-system

MapReduce Job

virtual

real

event.cwi.nl/lsde

GFS: Assumptions

• Commodity hardware over exotic hardware

– Scale out, not up

• High component failure rates

– Inexpensive commodity components fail all the time

• “Modest” number of huge files

– Multi-gigabyte files are common, if not encouraged

• Files are write-once, mostly appended to

– Perhaps concurrently

• Large streaming reads over random access

– High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

event.cwi.nl/lsde

GFS: Design Decisions

• Files stored as chunks

– Fixed size (64MB)

• Reliability through replication

– Each chunk replicated across 3+ chunkservers

• Single master to coordinate access, keep metadata

– Simple centralized management

• No data caching

– Little benefit due to large datasets, streaming reads

• Simplify the API

– Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

event.cwi.nl/lsde

From GFS to HDFS

• Terminology differences:

– GFS master = Hadoop namenode

– GFS chunkservers = Hadoop datanodes

• Differences:

– Different consistency model for file appends

– Implementation

– Performance

For the most part, we’ll use Hadoop terminology

event.cwi.nl/lsde

Adapted from (Ghemawat et al., SOSP 2003)

(file name, block id)

(block id, block location)

instructions to datanode

datanode state (block id, byte range)

block data

HDFS namenode

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

File namespace /foo/bar
block 3df2

Application

HDFS Client

HDFS architecture

event.cwi.nl/lsde

Namenode responsibilities

• Managing the file system namespace:

– Holds file/directory structure, metadata, file-to-block mapping, access

permissions, etc.

• Coordinating file operations:

– Directs clients to datanodes for reads and writes

– No data is moved through the namenode

• Maintaining overall health:

– Periodic communication with the datanodes

– Block re-replication and rebalancing

– Garbage collection

event.cwi.nl/lsde

Putting everything together

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

event.cwi.nl/lsde

PROGRAMMING FOR A DATA
CENTRE

event.cwi.nl/lsde

Programming for a data centre

• Understanding the design of warehouse-sized computes

– Different techniques for a different setting

– Requires quite a bit of rethinking

• MapReduce algorithm design

– How do you express everything in terms of map(), reduce(),

combine(), and partition()?

– Are there any design patterns we can leverage?

event.cwi.nl/lsde

Building Blocks

Source: Barroso and Urs Hölzle (2009)

event.cwi.nl/lsde

Storage Hierarchy

event.cwi.nl/lsde

Scaling up vs. out

• No single machine is large enough

– Smaller cluster of large SMP machines vs. larger cluster of commodity

machines (e.g., 8 128-core machines vs. 128 8-core machines)

• Nodes need to talk to each other!

– Intra-node latencies: ~100 ns

– Inter-node latencies: ~100 s

• Let’s model communication overhead

event.cwi.nl/lsde

Modelling communication overhead

• Simple execution cost model:

– Total cost = cost of computation + cost to access global data

– Fraction of local access is inversely proportional to size of cluster

• 1/n of the work is local

– n nodes (ignore cores for now)

– Three scenarios:

• Light communication: f =1

• Medium communication: f =10

• Heavy communication: f =100

• What is the cost of communication?

1 ms + f [100 ns (1/n) + 100 s (1 - 1/n)]

event.cwi.nl/lsde

Overhead of communication

event.cwi.nl/lsde

Seeks vs. scans

• Consider a 1TB database with 100 byte records

– We want to update 1 percent of the records

• Scenario 1: random access

– Each update takes ~30 ms (seek, read, write)

– 108 updates = ~35 days

• Scenario 2: rewrite all records

– Assume 100MB/s throughput

– Time = 5.6 hours(!)

• Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list

event.cwi.nl/lsde

Important Latencies

L1 cache reference 0.5 ns

L2 cache reference 7 ns

Main memory reference 100 ns

Send 2K bytes over 1 Gbps network 20,000 ns

SSD read one page (random) 100,000 ns

Read 1 MB sequentially from memory 250,000 ns

Round trip within same datacenter 500,000 ns

Read 1MB sequentially from SSD 2,000,000 ns

Magnetic Disk read one page (random) 10,000,000 ns

Read 1 MB sequentially from magnetic disk 20,000,000 ns

Send packet CA → Netherlands → CA 150,000,000 ns

Read 100MB sequentiall from disk 1,000,000,000 ns

* According to Jeff Dean (LADIS 2009 keynote)

0.4MB/s

event.cwi.nl/lsde

DEVELOPING ALGORITHMS

event.cwi.nl/lsde

Optimising computation

• The cluster management software orchestrates the computation

• But we can still optimise the computation

– Just as we can write better code and use better algorithms and data

structures

– At all times confined within the capabilities of the framework

• Cleverly-constructed data structures

– Bring partial results together

• Sort order of intermediate keys

– Control order in which reducers process keys

• Partitioner

– Control which reducer processes which keys

• Preserving state in mappers and reducers

– Capture dependencies across multiple keys and values

event.cwi.nl/lsde

Preserving State

Mapper object

setup

map

cleanup

state
one object per task

Reducer object

setup

reduce

close

state

one call per input

key-value pair

one call per

intermediate key

API initialization hook

API cleanup hook

event.cwi.nl/lsde

Importance of local aggregation

• Ideal scaling characteristics:

– Twice the data, twice the running time

– Twice the resources, half the running time

• Why can’t we achieve this?

– Synchronization requires communication

– Communication kills performance

• Thus… avoid communication!

– Reduce intermediate data via local aggregation

– Combiners can help

event.cwi.nl/lsde

Word count: baseline

class Mapper

 method map(docid a, doc d)

 for all term t in d do

 emit(t, 1);

class Reducer

 method reduce(term t, counts [c1, c2, …])

 sum = 0;

 for all counts c in [c1, c2, …] do

 sum = sum + c;

 emit(t, sum);

event.cwi.nl/lsde

Word count: introducing combiners

class Mapper

 method map(docid a, doc d)

 H = associative_array(term count;)

 for all term t in d do

 H[t]++;

 for all term t in H[t] do

 emit(t, H[t]);

Local aggregation inside one document reduces Map output

(the many duplicate occurrences of the word “the” now produce 1 output pair)

event.cwi.nl/lsde

Word count: introducing combiners

class Mapper

 method initialise()

 H = associative_array(term count);

 method map(docid a, doc d)

 for all term t in d do

 H[t]++;

 method close()

 for all term t in H[t] do

 emit(t, H[t]);

Compute sums across documents!

(HashMap H is alive for the entire Map Job, which processes many documents)

event.cwi.nl/lsde

Design pattern for local aggregation

• In-mapper combining

– Fold the functionality of the combiner into the mapper by preserving

state across multiple map calls

• Advantages

– Speed

– Why is this faster than actual combiners?

• Disadvantages

– Explicit memory management required

– Potential for order-dependent bugs

event.cwi.nl/lsde

Combiner design

• Combiners and reducers share same method signature

– Effectively they are map-side reducers

– Sometimes, reducers can serve as combiners

– Often, not…

• Remember: combiners are optional optimisations

– Should not affect algorithm correctness

– May be run 0, 1, or multiple times

• Example: find average of integers associated with the same key

event.cwi.nl/lsde

Computing the mean: version 1
class Mapper

 method map(string t, integer r)

 emit(t, r);

class Reducer

 method reduce(string, integers [r1, r2, …])

 sum = 0; count = 0;

 for all integers r in [r1, r2, …] do

 sum = sum + r; count++

 ravg = sum / count;

 emit(t, ravg);

Can we use a reducer as the combiner?

event.cwi.nl/lsde

Computing the mean: version 2
class Mapper

 method map(string t, integer r)

 emit(t, r);

class Combiner

 method combine(string t, integers [r1, r2, …])

 sum = 0; count = 0;

 for all integers r in [r1, r2, …] do

 sum = sum + r; count++;

 emit(t, pair(sum, count);

class Reducer

 method reduce(string t, pairs [(s1, c1), (s2, c2), …])

 sum = 0; count = 0;

 for all pair(s, c) r in [(s1, c1), (s2, c2), …] do

 sum = sum + s; count = count + c;

 ravg = sum / count;

 emit(t, ravg);

Wrong!

event.cwi.nl/lsde

Computing the mean: version 3
class Mapper

 method map(string t, integer r)

 emit(t, pair(t, 1));

class Combiner

 method combine(string t, pairs [(s1, c1), (s2, c2), …])

 sum = 0; count = 0;

 for all pair(s, c) in [(s1, c1), (s2, c2), …] do

 sum = sum + s; count = count + c;

 emit(t, pair(sum, count);

class Reducer

 method reduce(string t, pairs [(s1, c1), (s2, c2), …])

 sum = 0; count = 0;

 for all pair(s, c) in [(s1, c1), (s2, c2), …] do

 sum = sum + s; count = count + c;

 ravg = sum / count;

 emit(t, ravg);

Fixed!

Combiner must have input and output format = Reducer input format

event.cwi.nl/lsde

Basic Hadoop API

Mapper

• void setup(Mapper.Context context)
Called once at the beginning of the task

• void map(K key, V value, Mapper.Context context)
Called once for each key/value pair in the input split

• void cleanup(Mapper.Context context)
Called once at the end of the task

Reducer/Combiner

• void setup(Reducer.Context context)
Called once at the start of the task

• void reduce(K key, Iterable<V> values, Reducer.Context ctx)

Called once for each key

• void cleanup(Reducer.Context context)

Called once at the end of the task

event.cwi.nl/lsde

Basic cluster components

• One of each:

– Namenode (NN): master node for HDFS

– Jobtracker (JT): master node for job submission

• Set of each per slave machine:

– Tasktracker (TT): contains multiple task slots

– Datanode (DN): serves HDFS data blocks

event.cwi.nl/lsde

Recap

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

event.cwi.nl/lsde

Anatomy of a job

• MapReduce program in Hadoop = Hadoop job

– Jobs are divided into map and reduce tasks

– An instance of running a task is called a task attempt (occupies a slot)

– Multiple jobs can be composed into a workflow

• Job submission:

– Client (i.e., driver program) creates a job, configures it, and submits it

to jobtracker

– That’s it! The Hadoop cluster takes over

event.cwi.nl/lsde

Anatomy of a job

• Behind the scenes:

– Input splits are computed (on client end)

– Job data (jar, configuration XML) are sent to JobTracker

– JobTracker puts job data in shared location, enqueues tasks

– TaskTrackers poll for tasks

– Off to the races

event.cwi.nl/lsde

InputSplit InputSplit InputSplit

Input File Input File

InputSplit InputSplit

Record

Reader

Record

Reader

Record

Reader

Record

Reader

Record

Reader

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

In
p
u
tF

o
rm

a
t

event.cwi.nl/lsde

… …

InputSplit InputSplit InputSplit

Client

Records

Mapper

Record

Reader

Mapper

Record

Reader

Mapper

Record

Reader

event.cwi.nl/lsde

Mapper Mapper Mapper Mapper Mapper

Partitioner Partitioner Partitioner Partitioner Partitioner

Intermediates Intermediates Intermediates Intermediates Intermediates

Reducer Reducer Reduce

Intermediates Intermediates Intermediates

(combiners omitted here)

event.cwi.nl/lsde

Reducer Reducer Reduce

Output File

Record

Writer

O
u
tp

u
tF

o
rm

a
t

Output File

Record

Writer

Output File

Record

Writer

event.cwi.nl/lsde

Input and output

• InputFormat:

– TextInputFormat

– KeyValueTextInputFormat

– SequenceFileInputFormat

– …

• OutputFormat:

– TextOutputFormat

– SequenceFileOutputFormat

– …

event.cwi.nl/lsde

Complex data types in Hadoop

• How do you implement complex data types?

• The easiest way:

– Encoded it as Text, e.g., (a, b) = “a:b”

– Use regular expressions to parse and extract data

– Works, but pretty hack-ish

• The hard way:

– Define a custom implementation of Writable(Comparable)

– Must implement: readFields, write, (compareTo)

– Computationally efficient, but slow for rapid prototyping

– Implement WritableComparator hook for performance

• Somewhere in the middle:

– Some frameworks offers JSON support and lots of useful Hadoop

types

event.cwi.nl/lsde

Shuffle and sort in Hadoop

• Probably the most complex aspect of MapReduce

• Map side

– Map outputs are buffered in memory in a circular buffer

– When buffer reaches threshold, contents are spilled to disk

– Spills merged in a single, partitioned file (sorted within each partition):

combiner runs during the merges

• Reduce side

– First, map outputs are copied over to reducer machine

– Sort is a multi-pass merge of map outputs (happens in memory and on

disk): combiner runs during the merges

– Final merge pass goes directly into reducer

event.cwi.nl/lsde

Shuffle and sort

Mapper

Reducer

other mappers

other reducers

circular

buffer

(memory)

spills (on disk)

merged spills

(on disk)

intermediate files

(on disk)

Combiner

Combiner

event.cwi.nl/lsde

Summary

• The difficulties of parallel programming

– High-level frameworks to the rescue (Google MapReduce)

• Hadoop Architecture

– MapReduce

– HDFS

• MapReduce Programming

– Word Count Examples

– Optimization with combiners

– Sequential access, Bulk Transfers

• Vs small random accesses (memory, network,disk bottleneck)

